Sains Malaysiana 52(9)(2023):
2673-2688
http://doi.org/10.17576/jsm-2023-5209-16
Human
Mesenchymal Stem Cell Derived from Bone Marrow and Umbilical Cord Display
Anti-Cancer Activity in Cancer Cell Lines in vitro
(Sel Stem Mesenkima Manusia Diambil daripada Sum-sum Tulang dan Tali Pusat menunjukkan Aktiviti Anti-Kanser dalam Titisan Sel Kanser secara in vitro)
NOOR ATIQAH
FAKHARUZI, MOON NIAN LIM, ZUHAIRI ABDUL RAHMAN, NURUL AIN NASIM MOHD YUSOF,
EZALIA ESA & KAMAL SHAIK FAKIRUDDIN*
Haematology Unit, Cancer
Research Centre, Institute for Medical Research (IMR), National Institutes of
Health (NIH), Ministry of Health Malaysia (MOH), 40170 Shah Alam, Selangor, Malaysia
Received: 17 October 2022/Accepted: 5 September 2023
Abstract
The anti-tumour efficacy of engineered
mesenchymal stem cell (MSCs) in cancers have been well documented by several
reports. However, the impact of MSCs on the pathogenesis of solid cancers
remains elusive. The study aims to elucidate the role of MSCs from bone marrow
(BMMSCs) and umbilical cord (UCMSCs) on the proliferation, apoptosis and clonogenicity of cancer cell including H2170 (squamous cell
carcinoma), LN18 (glioblastoma) and MCF7 (breast cancer) in vitro.
Highest concentration of conditioned medium derived from the UCMSCs was
significantly (p<0.001) effective to inhibit the proliferation of H2170
(25.8 ± 3.5%), LN18 (17.6 ± 6.5%) and MCF7 (33.2 ± 6.8%) as compared to 100%
viability in basal. Both MSCs and its conditioned medium were able to significantly
(p<0.001) induce apoptosis (early and late) to the H2170 and LN18 cells.
However, for MCF7 cells, co-cultured with both MSCs had higher impact on the
apoptosis as compared to their condition medium. Furthermore,
conditioned medium from UCMSCs were able to significantly reduced the number of
colonies in H2170 (609.5 ± 4.9) and LN18 (171.3 ± 12.6) as compared to control
(H2170; 1196.3 ±12.8 and LN18; 253.3 ± 12.3), suggesting that these two cancer
cells are sensitive to the MSCs. Notably, by
co-culturing of all three cancer cell lines with the MSCs’ conditioned medium, we found that there was an increased expression of
more than two-fold in BAX, BAD, and APAF1 genes showing the ability of MSCs’ conditioned medium to induce the intrinsic apoptosis pathway in the cancer cells. Collectively, our findings demonstrated that the
MSCs could induce apoptosis and inhibit both H2170 and LN18 cancer cell
proliferation. Furthermore, this study did not find evidence of MSCs in
enhancing tumorigenic characteristics of these cancer cells, and thus we
postulate that MSCs are basically safe as a cell-based therapy in cancer
treatment.
Keywords: Anti-cancer; cancer cell lines; in vitro; mesenchymal stem cell
Abstrak
Efikasi
kejuruteraan sel stem mesenkima (MSC) dalam menangani beberapa jenis kanser
telah pun dilaporkan. Namun demikian, impak MSC terhadap patogenesis kanser
pepejal masih kurang diketahui. Kajian ini bertujuan untuk menjelaskan peranan
MSC daripada sum-sum tulang (BMMSC) dan tali pusat (UCMSC) terhadap
pertumbuhan, apoptosis dan fungsi klonogenisiti sel kanser H2170 (karsinoma sel
skuamosa), LN18 (glioblastoma) dan MCF 7 (kanser payudara). Media pertumbuhan
berpekatan tertinggi yang diperoleh daripada UCMSC adalah berkesan (p<0.001) untuk menghalang pertumbuhan sel H2170 (25.8 ± 3.5%), LN18
(17.6 ± 6.5%) dan MCF7 (33.2 ± 6.8%) apabila dibandingkan dengan 100% keviabelan asas.
Kedua-dua BMMSC dan UCMSC serta media pertumbuhan mereka mendorong apoptosis
(peringkat awal dan akhir) bererti (p<0.001) terhadap sel-sel H2170 dan
LN18. Walau bagaimanapun, bagi sel-sel MCF7, pengkulturan bersama kedua-dua MSC
menunjukkan kesan apoptosis yang lebih tinggi berbanding dengan media
pertumbuhan mereka. Selain itu,
media pertumbuhan daripada UCMSC nyata dapat mengurangkan bilangan koloni sel
H2170 (609.5 ± 4.9) dan LN18 (171.3 ± 12.6) berbanding dengan kawalan (H2170;
1196.3 ±12.8 dan LN18; 253.3 ± 12.3), mencadangkan bahawa kedua-dua sel kanser
adalah sensitif terhadap MSC. Secara ketara, kami mendapati bahawa pengkulturan
ketiga-tiga titisan sel kanser tersebut bersama dengan media pertumbuhan MSC
dapat meninggikan lebih dua kali ganda eskpresi gen BAX, BAD dan APAF1,
menunjukkan bahawa media pertumbuhan MSC dapat mendorong laluan apoptosis
intrinsik pada sel kanser tersebut. Secara
keseluruhan, kajian ini telah menunjukkan bahawa MSC dapat mendorong apoptosis
dan menyekat pertumbuhan sel kanser H2170 dan LN18. Di samping itu, kajian ini tidak
menunjukkan bahawa MSC meningkatkan ciri tumorigenik
pada sel kanser, maka kami mempostulatkan bahawa MSC adalah
selamat bagi terapi berasaskan sel bagi rawatan kanser.
Kata kunci:
Anti-kanser; in vitro; sel kanser; sel
stem mesenkima
References
Brown,
C., McKee, C., Bakshi, S., Walker, K., Hakman, E., Halassy, S., Svinarich, D.,
Dodds, R., Govind, C.K. & Chaudhry, G.R. 2019. Mesenchymal stem cells: Cell
therapy and regeneration potential. Journal of Tissue Engineering and
Regenerative Medicine 13(9): 1738-1755. https://doi.org/10.1002/term.2914
Chang, D., Fan, T., Gao, S., Jin, Y., Zhang, M. & Ono, M. 2021.
Application of mesenchymal stem cell sheet to treatment of ischemic heart disease. Stem Cell Research & Therapy 12: 384. https://doi.org/10.1186/s13287-021-02451-1
Chen, J., Ji, T., Wu, D., Jiang, S., Zhao, J., Lin, H. & Cai, X.
2019. Human mesenchymal stem cells promote tumor growth via MAPK pathway and
metastasis by epithelial mesenchymal transition and integrin Α5 in
hepatocellular carcinoma. Cell Death & Disease 10(6): 425.
https://doi.org/10.1038/s41419-019-1622-1
Chulpanova, D.S., Gilazieva, Z.E., Kletukhina, S.K., Aimaletdinov,
A.M., Garanina, E.E., James, V., Rizvanov, A.A. & Solovyeva, V.V. 2021.
Cytochalasin B-induced membrane vesicles from human mesenchymal stem cells overexpressing IL2 are able to stimulate
CD8(+) T-killers to kill human triple negative breast cancer cells. Biology
(Basel) 10(2): 141. https://doi.org/10.3390/biology10020141
Ciavarella, S., Caselli, A., Tamma, A.V., Savonarola, A., Loverro, G.,
Paganelli, R., Tucci, M. & Silvestris, F. 2015. A peculiar molecular
profile of umbilical cord-mesenchymal stromal cells drives their inhibitory effects on multiple myeloma
cell growth and tumor progression. Stem Cells and Development 24(12):
1457-1470. https://doi.org/10.1089/scd.2014.0254
Cortes-Dericks, L. & Galetta, D. 2019. The therapeutic potential
of mesenchymal stem cells in lung cancer: Benefits, risks and challenges. Cellular Oncology
(Dordrecht) 42(6): 727-738. https://doi.org/10.1007/s13402-019-00459-7
Crowley, L.C., Marfell, B.J., Scott, A.P. & Waterhouse, N.J. 2016.
Quantitation of apoptosis and necrosis by Annexin V binding, propidium iodide
uptake, and flow cytometry. Cold Spring Harbor Protocols 2016(11).
https://doi.org/10.1101/pdb.prot087288
Deng, X., Zhao, W., Song, L., Ying, W. & Guo, X. 2018.
Pro-apoptotic effect of TRAIL-transfected endothelial progenitor cells on
glioma cells. Oncology Letters 15(4): 5004-5012.
https://doi.org/10.3892/ol.2018.7977
Fazileh Hosseini Shamili, Houshang Rafatpanah Bayegi, Zahra Salmasi,
Kayvan Sadri, Mahmoud Mahmoudi, Mahmoudreza Kalantari, Mohammad Ramezani &
Khalil Abnous. 2018. Exosomes derived from TRAIL-engineered mesenchymal stem
cells with effective anti-tumor activity in a mouse melanoma model. International
Journal of Pharmaceutics 549(1-2): 218-229.
https://doi.org/10.1016/j.ijpharm.2018.07.067
Fulda, S. & Debatin, K-M. 2006. Extrinsic versus intrinsic
apoptosis pathways in anticancer chemotherapy. Oncogene 25(34):
4798-4811. https://doi.org/10.1038/sj.onc.1209608
Goers, L., Freemont, P. & Polizzi, K.M. 2014. Co-culture systems
and technologies: Taking synthetic biology to the next level. Journal of the
Royal Society, Interface 11(96). https://doi.org/10.1098/rsif.2014.0065
Gunaydin, G. 2021. CAFs interacting with TAMs in tumor
microenvironment to enhance tumorigenesis and immune evasion. Frontiers in Oncology 11: 668349.
https://doi.org/10.3389/fonc.2021.668349
Hanahan, D. & Weinberg, R.A. 2000. The hallmarks of cancer. Cell 100: 57-70.
Han, H.R., Park, S.A., Ahn, S., Jeun, S-S. & Ryu, C.H. 2019.
Evaluation of combination treatment effect with TRAIL-secreting mesenchymal
stem cells and compound C against glioblastoma. Anticancer Research 39(12): 6635-6643. https://doi.org/10.21873/anticanres.13878
Han, I., Kwon, B-S., Park, H-K. & Kim, K.S. 2017. Differentiation
potential of mesenchymal stem cells is related to their intrinsic mechanical
properties. International Neurourology Journal 21(Suppl 1): S24-S31.
https://doi.org/10.5213/inj.1734856.428
Ho, C-T., Wu, M-H., Chen, M-J., Lin, S-P., Yen, Y-T. & Hung, S-C.
2021. Combination of mesenchymal stem cell-delivered oncolytic virus with
prodrug activation increases efficacy
and safety of colorectal cancer therapy. Biomedicines 9(5): 548.
https://doi.org/10.3390/biomedicines9050548
Ho, Y.K., Woo, J.Y., Tu, G.X.E., Deng, L-W. & Too, H-P. 2020. A
highly efficient non-viral process for programming mesenchymal stem cells
for gene directed enzyme prodrug cancer
therapy. Scientific Reports 10(1): 14257.
https://doi.org/10.1038/s41598-020-71224-2
Husniza Hussain, Santhana Raj L., Syahida Ahmad, Mohd. Fuat Abd.
Razak, Wan Nazaimoon Wan Mohamud, Jamilah Bakar & Hasanah Mohd. Ghazali.
2019. Determination of cell viability using acridine orange/Propidium iodide
dual-spectrofluorometry assay. Cogent Food & Agriculture 5(1):
1582398. https://doi.org/10.1080/23311932.2019.1582398
Jacobs, S.A., Roobrouck, V.D., Verfaillie, C.M. & van Gool, S.W.
2013. Immunological characteristics of human mesenchymal stem cells and
multipotent adult progenitor cells. Immunology and Cell Biology 91(1):
32-39. https://doi.org/10.1038/icb.2012.64
Jang, M., Kim, S.S. & Lee, J. 2013. Cancer cell metabolism:
Implications for therapeutic targets. Experimental & Molecular Medicine 45(10): e45. https://doi.org/10.1038/emm.2013.85
Jung, P.Y., Ryu, H., Rhee, K-J., Hwang, S., Lee, C.G., Gwon, S-Y.,
Kim, J., Kim, J., Yoo, B.S., Baik, S.K., Bae, K.S. & Eom, Y.W. 2019.
Adipose tissue-derived mesenchymal stem cells cultured at high density express
IFN-β and TRAIL and suppress the growth of H460 human lung cancer cells. Cancer
Letters 440-441: 202-210. https://doi.org/10.1016/j.canlet.2018.10.017
Kalamegam Gauthaman, Fong Chui Yee, Suganya Cheyyatraivendran, Arijit
Biswas, Mahesh Choolani & Ariff Bongso. 2012. Human umbilical cord Wharton’s
jelly stem cell (HWJSC) extracts inhibit cancer cell growth in vitro. Journal
of Cellular Biochemistry 113(6): 2027-2039.
https://doi.org/10.1002/jcb.24073
Kamal Shaik Fakiruddin, Moon Nian Lim, Norshariza Nordin, Rozita
Rosli, Zubaidah Zakaria & Syahril Abdullah. 2019. Targeting of CD133+ cancer stem cells by mesenchymal stem cell expressing TRAIL reveals a
prospective role of apoptotic gene regulation in non-small cell lung cancer. Cancers 11(9): 1261. https://doi.org/10.3390/cancers11091261
Karnoub, A.E., Dash, A.B., Vo, A.P., Sullivan, A., Brooks, M.W., Bell,
G.W., Richardson, A.L., Polyak, K., Tubo, R. & Weinberg, R.A. 2007.
Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162): 557-563. https://doi.org/10.1038/nature06188
Kazimirsky, G., Jiang, W., Slavin, S., Ziv-Av, A. & Brodie, C.
2016. Mesenchymal stem cells enhance the oncolytic effect of newcastle disease
virus in glioma cells and glioma stem cells via the secretion of TRAIL. Stem
Cell Research & Therapy 7: 149.
https://doi.org/10.1186/s13287-016-0414-0
Kemp, K.C., Hows, J. & Donaldson, C. 2005. Bone marrow-derived
mesenchymal stem cells. Leuk Lymphoma 46: 1531-1544.
https://doi.org/10.1080/10428190500215076
Kern, S., Eichler, H., Stoeve, J., Klüter, H.
& Bieback, K. 2006. Comparative analysis of mesenchymal stem
cells from bone marrow, umbilical cord blood, or adipose tissue. STEM CELLS 24: 1294-1301. https://doi.org/10.1634/stemcells.2005-0342
Keshavarz, M., Ebrahimzadeh, M.S., Miri, S.M., Dianat-Moghadam, H.,
Ghorbanhosseini, S.S., Mohebbi, S.R., Keyvani, H. & Ghaemi, A. 2020.
Oncolytic newcastle disease virus delivered by mesenchymal stem
cells-engineered system enhances the
therapeutic effects altering tumor microenvironment. Virology Journal 17(1): 64. https://doi.org/10.1186/s12985-020-01326-w
Kidd, S., Spaeth, E., Klopp, A., Andreeff, M., Hall, B. & Marini,
F.C. 2008. The (in) auspicious role of mesenchymal stromal cells in cancer: Be
it friend or foe. Cytotherapy 10: 657-667.
https://doi.org/10.1080/14653240802486517
Kolluri, K.K., Laurent, G.J. & Janes, S.M. 2013. Mesenchymal stem
cells as vectors for lung cancer therapy. Respiration 85(6): 443-451.
https://doi.org/10.1159/000351284
Koseki Kimura, Tsunao Kishida, Junko Wakao, Tomoko Tanaka, Mayumi
Higashi, Shigehisa Fumino, Shigeyoshi Aoi, Taizo Furukawa, Osam Mazda &
Tatsuro Tajiri. 2016. Tumor-homing effect of human mesenchymal stem cells in a
TH-MYCN mouse model of neuroblastoma. Journal
of Pediatric Surgery 51(12): 2068-2073.
https://doi.org/10.1016/j.jpedsurg.2016.09.041
Praveen Kumar L, Sangeetha Kandoi, Ranjita Misra, Vijayalakshmi S.,
Rajagopal K. & Rama Shanker Verma. 2019. The mesenchymal stem cell
secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine
& Growth Factor Reviews 46: 1-9.
https://doi.org/10.1016/j.cytogfr.2019.04.002
Laing, A.G., Fanelli, G., Ramirez-Valdez, A., Lechler, R.I., Lombardi,
G. & Sharpe, P.T. 2019. Mesenchymal stem cells inhibit T-cell function
through conserved induction of cellular
stress. PLoS ONE 14(3): e0213170.
https://doi.org/10.1371/journal.pone.0213170
Li, L., Tian, H., Chen, Z., Yue, W., Li, S. & Li, W. 2011.
Inhibition of lung cancer cell proliferation mediated by human mesenchymal
stem cells. Acta Biochimica et
Biophysica Sinica 43(2): 143-148. https://doi.org/10.1093/abbs/gmq118
Li, T., Wan, Y., Su, Z., Li, J., Han, M. & Zhou, C. 2021.
Mesenchymal stem cell-derived exosomal microRNA-3940-5p inhibits
colorectal cancer metastasis by
targeting integrin Α6. Digestive Diseases and Sciences 66(6):
1916-1927. https://doi.org/10.1007/s10620-020-06458-1
Li, X., Fan, Q., Peng, X., Yang, S., Wei, S., Liu, J., Yang, L. &
Li, H. 2022. Mesenchymal/stromal stem cells: Necessary factors in tumour
progression. Cell Death Discovery 8(1): 333.
https://doi.org/10.1038/s41420-022-01107-0
Liu, Q-W., Li, J-Y., Zhang, X-C., Liu, Y., Liu, Q-Y., Xiao, L., Zhang,
W-J., Wu, H-Y., Deng, K-Y. & Xin, H-B. 2020. Human amniotic mesenchymal
stem cells inhibit hepatocellular carcinoma in tumour-bearing mice. Journal of Cellular and Molecular Medicine 24(18): 10525-10541. https://doi.org/10.1111/jcmm.15668
Liu, T., Zhu, K., Ke, C., Yang, S., Yang, F., Li, Z. & Zhang, Z.
2017. Mesenchymal stem cells inhibited development of lung cancer induced by
chemical carcinogens in a rat model. American Journal of Translational
Research 9(6): 2891-2900. https://pubmed.ncbi.nlm.nih.gov/28670377
Liu, X., Hu, J., Sun, S., Li, F., Cao, W., Wang, Y.U., Ma, Z. &
Yu, Z. 2015. Mesenchymal stem cells expressing interleukin-18 suppress breast
cancer cells in vitro. Exp. Ther. Med. 9: 1192-1200.
https://doi.org/10.3892/etm.2015.2286
Liu, X.,, Hu, J., Li, Y., Cao, W., Wang, Y., Ma, Z. & Li, F. 2018.
Mesenchymal stem cells expressing interleukin-18 inhibit breast cancer in a
mouse model. Oncology Letters 15(5): 6265-6274.
https://doi.org/10.3892/ol.2018.8166
Lu, Z., Chang, W., Meng, S., Xu, X., Xie, J., Guo, F., Yang, Y., Qiu,
H. & Liu, L. 2019. Mesenchymal stem cells induce dendritic cell immune
tolerance via paracrine hepatocyte
growth factor to alleviate acute lung injury. Stem Cell Research &
Therapy 10(1): 372. https://doi.org/10.1186/s13287-019-1488-2
Mahasa, K.J., de Pillis, L., Ouifki, R., Eladdadi, A., Maini, P.,
Yoon, A-R. & Yun, C-O. 2020. Mesenchymal stem cells used as carrier cells
of oncolytic adenovirus results in enhanced oncolytic virotherapy. Scientific Reports 10: 425.
https://doi.org/10.1038/s41598-019-57240-x
Malini Fonseka, Rajesh Ramasamy, Boon Chong Tan & Heng Fong Seow.
2012. Human umbilical cord blood-derived mesenchymal stem cells (HUCB-MSC)
inhibit the proliferation of K562 (human
erythromyeloblastoid leukaemic cell line). Cell Biology International 36(9): 793-801. https://doi.org/10.1042/CBI20110595
Martin, F.T., Dwyer, R.M., Kelly, J., Khan, S., Murphy, J.M., Curran,
C., Miller, N., Hennessy, E., Dockery, P., Barry, F.P., O'Brien, T. &
Kerin, M.J. 2010. Potential role of mesenchymal stem cells (MSCs) in the breast
tumour microenvironment: Stimulation of epithelial to mesenchymal transition
(EMT). Breast Cancer Res. Treat. 124: 317-326.
https://doi.org/10.1007/s10549-010-0734-1
Meng, Q., Zhang, B., Zhang, Y., Wang, S. & Zhu, X. 2021. Human
bone marrow mesenchymal stem cell-derived extracellular vesicles impede
the progression of cervical cancer via
the MiR-144-3p/CEP55 pathway. Journal of Cellular and Molecular Medicine 25(4): 1867-1883. https://doi.org/10.1111/jcmm.15573
Nieddu, V., Piredda, R., Bexell, D., Barton, J., Anderson, J., Sebire,
N., Kolluri, K., Janes, S.M., Karteris, E. & Sala, A. 2019. Engineered
human mesenchymal stem cells for neuroblastoma therapeutics. Oncology
Reports 42(1): 35-42. https://doi.org/10.3892/or.2019.7152
Peng, L., Jia, Z., Yin, X., Zhang, X., Liu, Y., Chen, P., Ma, K. &
Zhou, C. 2008. Comparative analysis of mesenchymal stem cells from bone marrow,
cartilage, and adipose tissue. Stem Cells Dev. 17: 761-773.
https://doi.org/10.1089/scd.2007.0217
Piao, L., Huang, Z., Inoue, A., Kuzuya, M. & Cheng, X.W. 2022.
Human umbilical cord-derived mesenchymal stromal cells ameliorate aging-associated skeletal muscle atrophy and
dysfunction by modulating apoptosis and mitochondrial damage in SAMP10 mice. Stem
Cell Research & Therapy 13: 226.
https://doi.org/10.1186/s13287-022-02895-z
Pierdomenico, L., Bonsi, L., Calvitti, M., Rondelli, D., Arpinati, M.,
Chirumbolo, G., Becchetti, E., Marchionni, C., Alviano, F., Fossati, V.,
Staffolani, N., Franchina, M., Grossi, A. & Bagnara, G.P. 2005. Multipotent
mesenchymal stem cells with immunosuppressive activity can be easily isolated
from dental pulp. Transplantation 80(6): 836-842.
https://doi.org/10.1097/01.tp.0000173794.72151.88
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R.,
Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. & Marshak, D.R.
1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147. https://doi.org/10.1126/science.284.5411.143
Qiao, L., Xu, Z., Zhao, T., Zhao, Z., Shi, M., Zhao, R.C., Ye, L.
& Zhang, X. 2008a. Suppression of tumorigenesis by human mesenchymal stem
cells in a hepatoma model. Cell Res. 18: 500-507.
http://dx.doi.org/10.1038/cr.2008.40
Qiao, L., Xu, Z-L., Zhao, T-J., Ye, L-H. & Zhang, X-D. 2008b.
Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells
via depression of Wnt signalling. Cancer Letters 269(1): 67-77.
https://doi.org/10.1016/j.canlet.2008.04.032
Ribeiro Franco, P.I., Rodrigues, A.P., de Menezes, L.B. & Pacheco
Miguel, M. 2020. Tumor microenvironment components: Allies of cancer
progression. Pathology, Research and Practice 216(1): 152729.
https://doi.org/10.1016/j.prp.2019.152729
Rodrigues, J., Heinrich, M.A., Moreira Teixeira, L. & Prakash, J.
2021. 3D in vitro model (R)evolution: Unveiling tumor-stroma
interactions. Trends in Cancer 7(3): 249-264.
https://doi.org/10.1016/j.trecan.2020.10.009
Rossignoli, F., Spano, C., Grisendi, G., Foppiani, E.M., Golinelli,
G., Mastrolia, I., Bestagno, M., Candini, O., Petrachi, T., Recchia, A.,
Miselli, F., Rovesti, G., Orsi, G., Veronesi, E., Medici, G., Petocchi, B.,
Pinelli, M., Horwitz, E.M., Conte, P. & Dominici, M. 2019. MSC-delivered
soluble TRAIL and paclitaxel as novel combinatory treatment for pancreatic adenocarcinoma. Theranostics 9(2): 436-448. https://doi.org/10.7150/thno.27576
Sai, B., Dai, Y., Fan, S., Wang, F., Wang, L., Li, Z., Tang, J., Wang,
L., Zhang, X., Zheng, L., Chen, F., Li, G. & Xiang, J. 2019.
Cancer-educated mesenchymal stem cells promote the survival of cancer cells
at primary and distant metastatic sites
via the expansion of bone marrow-derived-PMN-MDSCs. Cell Death & Disease 10(12): 941. https://doi.org/10.1038/s41419-019-2149-1
Sasportas, L.S., Kasmieh, R., Wakimoto, H., Hingtgen, S., van de
Water, J.A.J.M., Mohapatra, G., Figueiredo, J.L., Martuza, R.L., Weissleder, R.
& Shah, K. 2009. Assessment of therapeutic efficacy and fate of engineered
human mesenchymal stem cells for cancer therapy. Proceedings of the National
Academy of Sciences 106(12): 4822-4827.
https://doi.org/10.1073/pnas.0806647106
Senthilkumar Kalimuthu, Liya Zhu, Ji Min Oh, Prakash Gangadaran, Ho
Won Lee, Se Hwan Baek, Ramya Lakshmi Rajendran, Arunnehru Gopal, Shin Young
Jeong, Sang-Woo Lee, Jaetae Lee & Byeong-Cheol Ahn. 2018. Migration of
mesenchymal stem cells to tumor xenograft models and in vitro drug
delivery by doxorubicin. International Journal of Medical Sciences 15(10): 1051-1061. https://doi.org/10.7150/ijms.25760
Spaggiari, G.M., Capobianco, A., Becchetti, S., Mingari, M.C. &
Moretta, L. 2006. Mesenchymal stem cell-natural killer cell interactions:
Evidence that activated nk cells are
capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107(4): 1484-1490. https://doi.org/10.1182/blood-2005-07-2775
Stagg, J. 2008. Mesenchymal stem cells in cancer. Stem Cell Reviews 4: 119-124. https://doi.org/10.1007/s12015-008-9030-4
Studeny, M., Marini, F.C., Champlin, R.E., Zompetta, C., Fidler, I.J.
& Andreeff, M. 2002. Bone marrow-derived mesenchymal stem cells as vehicles
for interferon-β delivery into tumors. Cancer Research 62:
3603-3608. http://cancerres.aacrjournals.org/content/62/13/3603.abstract
Takeshima, H. & Ushijima, T. 2019. Accumulation of genetic and
epigenetic alterations in normal cells and cancer risk. NPJ Precision Oncology 3: 7.
https://doi.org/10.1038/s41698-019-0079-0
Wang, X-J., Xiang, B-Y., Ding, Y-H., Chen, L., Zou, H., Mou, X-Z.
& Xiang, C. 2017. Human menstrual blood-derived mesenchymal stem cells as a
cellular vehicle for malignant glioma gene therapy. Oncotarget 8(35):
58309-58321. https://doi.org/10.18632/oncotarget.17621
Wahyu Widowati, Harry Murti, Halida Widyastuti, Dian Ratih
Laksmitawati, Rizal Rizal, Hanna Sari Widya Kusuma, Sutiman Bambang Sumitro, M
Aris Widodo & Indra Bachtiar. 2021. Decreased inhibition of proliferation
and induction of apoptosis in breast cancer cell lines (T47D and MCF7) from treatment with conditioned medium
derived from hypoxia-treated Wharton’s jelly MSCs compared with
normoxia-treated MSCs. International Journal of Hematology-Oncology and Stem
Cell Research 15(2): 77-89. https://doi.org/10.18502/ijhoscr.v15i2.6038
Wu, D-B., Chen, E-Q. & Tang, H. 2018. Stem cell transplantation
for the treatment of end-stage liver disease. World Journal of Hepatology 10(12): 907-910. https://doi.org/10.4254/wjh.v10.i12.907
Zahra Salmasi, Maryam Hashemi, Elahe Mahdipour, Hossein Nourani,
Khalil Abnous & Mohammad Ramezani. 2020. Mesenchymal stem cells engineered
by modified polyethylenimine polymer for targeted cancer gene therapy, in vitro and in
vivo. Biotechnology Progress 36(6): e3025.
https://doi.org/10.1002/btpr.3025
Zhang, C., Zhai, W., Xie, Y., Chen, Q., Zhu, W.
& Sun, X. 2013. Mesenchymal stem cells derived from breast
cancer tissue promote the proliferation
and migration of the MCF-7 cell line in vitro. Oncology Letters 6(6): 1577-1582. https://doi.org/10.3892/ol.2013.1619
Zhang, X., Hu, F., Li, G., Li, G., Yang, X., Liu, L., Zhang, R.,
Zhang, B. & Feng, Y. 2018. Human colorectal cancer-derived mesenchymal stem
cells promote colorectal cancer progression through IL-6/JAK2/STAT3 signaling. Cell Death &
Disease 9(2): 25. https://doi.org/10.1038/s41419-017-0176-3
Zhou, J., Tan, X., Tan, Y., Li, Q., Ma, J. & Wang, G. 2018.
Mesenchymal stem cell derived exosomes in cancer progression, metastasis and
drug delivery: A comprehensive review. Journal
of Cancer 9(17): 3129-3137. https://doi.org/10.7150/jca.25376
Zhu, Y., Sun, Z., Han, Q., Liao, L., Wang, J., Bian, C., Li, J., Yan,
X., Liu, Y., Shao, C. & Zhao, R.C. 2009. Human mesenchymal stem cells
inhibit cancer cell proliferation by secreting DKK-1. Leukemia 23(5): 925-933.
https://doi.org/10.1038/leu.2008.384
*Corresponding
author; email: kamal.shaik@moh.gov.my
|